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Topics

● Accelerator beam dynamics
● Parallel scaling in Synergia
● Why we need to move on
● A GPU implementation
● Early MIC results
● Toward a next-generation Synergia



  

Computational Beam Dynamics

● 50-1000 steps/revolution
● Internal and external fields

● External field calculations 
trivially parallelizable

● Internal field calculations 
require PIC

● Minimal bunch/field structure

● Existing and planned 
accelerators
● 1,000s of elements

● 10s of types of elements
● 1,000s to 1,000,000s of 

revolutions
● 1-1000s of bunches of O(1012) 

particles



  

Parallel Scaling in Beam Dynamics

● Challenge: beam dynamics simulations are big problems 
require many small solves
– Typically 643 – 1283 grids (2e5 – 2e6 degrees of freedom)
– Need to do many time steps (1e5 to 1e8)

● Typical pure-PIC scaling applies to scaling with respect to grid 
size
– Including decomposing particles by grid location
– In beam dynamics, external fields can cause particles to move over 

many grid cells in a single step
● Communication required to maintain decomposition and load balance

– Point-to-point communication
– Complicated for both programmer and end-user

● Change in physical parameters can change communication time by x100



  

Particle (lack of) decomposition

● First step: eliminate particle decomposition
– Requires collective communication

● But not point-to-point
● Collectives are typically highly optimized

– Simpler for programmer and end-user



  

Communication avoidance

● Second (breakthrough!) step: redundant field solves
– Field solves are a fixed size problem
– More calculation, less communication
– Allows scaling in number of particles and/or bunches
– Can use arbitrary unit size, but one node is usually best



  

Scaling

Single-bunch strong scaling from 

16 to 16,384 cores

32x32x1024 grid,  105M particles

Weak scaling from 

1M to 256M 

particles

128 to 32,768 cores

Weak scaling from 

64 to 1024 bunches

8192 to 131,072 

cores

Up to over 1010 

particles

Scaling results on ALCF machines: Mira (BG/Q) and Intrepid (BG/P)



  

Why am I here?

● Synergia runs on a wide variety of platforms

ODROID-U3
(ARM A9)

laptops and desktops

Linux clusters

Cray

Blue Gene



  

Why? continued

● Interesting and useful beam dynamics cover a 
tremendous range of computing requirements
– All of the platforms on the previous slide are useful
– We typically emphasize the extraordinarily large

● Our specialty

● We target all end users, including those who 
are not experts in cluster- or supercomputing



  

Why GPU/MIC/Multicore?

● The future of supercomputing
● The future of desktop computing
● I anticipate a new class of target hardware: 

single box with a few GPUs and/or MICs
– Cheaper to obtain and maintain than a Linux 

cluster
– Easier to use



  

Optimizing for GPUs and Multicore

● Shared memory is back!
– Some things get easier, some harder

● Charge deposition in shared memory systems 
is the key challenge

● Multi-level parallelism very compatible with our 
communication avoidance approach



  

Charge deposition in shared memory



  

Charge deposition in shared memory – solution 1



  

Charge deposition in shared memory – solution 2



  

GPU and Multicore Results

Comparison of CPUs and GPUs
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Intel MIC results

● One selling point for Intel MIC architecture: cores are 
similar to traditional Intel architecture – major 
changes may not be necessary...

 
MIC pure MPI



  

What next?

● Need to take advantage of MIC SIMD

● Early criticism of GPU “speedups”: What if you spent the same effort 
optimizing your non-GPU code?

● Work toward unified production code

– Leverage optimization efforts for all architectures

cluster supercomputer MIC GPU

communication 
avoidance

X X X X

memory 
offloading

X X

SIMD X X X O



  

Real-world problem (in progress)

● Study emittance growth over 100,000 
revolutions in GSI SIS18 accelerator
– Effects of statistical noise appear to be important

71 steps/turn
7,100,000 steps
4,194,304 particles
29,779,558,400,000 particle-steps
1,238,158,540,800,000 calls to “drift”

Yes, that's over a quadrillion



  

Optimizing “drift”

● External field calculations (including drift) in Synergia provided by 
CHEF
– C++, predates Synergia by over a decade
– Designed for deep analysis of single-particle physics
– The genius: the same code propagates particle coordinates and 

polynomials in particle coordinates
● Non-linear map analysis

– Synergia has to convert each of its particles to a CHEF particle (and back) 
each half step

● 60 trillion conversions each way
– This overhead is our “abstraction penalty”



  

Abstraction Penalty



  

SIMD implementation

● Use SIMD instructions to work on 2, 4 or 8 particles at once
● Different C++ implementations on different platforms

– Intel/AMD: vectorclass
● http://www.agner.org/optimize/#vectorclass
● Great!

– MIC: mic/micvec.h
● Provided by Intel
● Not quite great

– Blue Gene: vector4double extension
● Provided by IBM
● Type and functions, no operator overloading
● Painful, write-only

● Efficiency requires transpose of particle data
– Boost MultiArray simply takes a flag

http://www.agner.org/optimize/#vectorclass


  

SIMD-enhanced results



  

Overall Speedup
● Abstraction penalty reduction, SIMD, magic factor



  

Conclusions

● Accelerator beam dynamics leads to specialized PIC 
calculations
– With a wide range of problem sizes

● Current Synergia has excellent scaling characteristics on 
traditional architectures

● Working toward a production version of Synergia for new 
generation
– Leveraging optimization efforts across platforms
– Optimizing systems large, small and in-between



  

Backup slides



  

Hardware

● Intel12: dual-socket, six-core Intel Westmere
● AMD32: quad-socket, eight-core AMD Opteron
● MIC: Intel Xeon Phi 5110P



  

Drift routine

template <typename T>
inline void drift_unit(T& x, T& y, T& cdt, T& xp, T& yp, T& dpop, 
                       double length, double reference_momentum, double m,
                       double reference_time) {
    T inv_npz = invsqrt((dpop + 1.0) * (dpop + 1.0) - xp * xp - yp * yp);
    T lxpr = xp * length * inv_npz;
    T lypr = yp * length * inv_npz;
    T D = sqrt(lxpr * lxpr + length * length + lypr * lypr);
    T p = dpop * reference_momentum + reference_momentum;
    T E = sqrt(p * p + m * m);
    T beta = p / E;
    x += lxpr;
    y += lypr;
    cdt += D / beta - reference_time;
}

// T can be double, Vec2d (SSE) , Vec4d (AVX), F64vec8 (~AVX512)
// T can also be (CHEF) Particle::Component or 
//     JetParticle::Component (polynomial calculation)



  

QPX drift routine
inline void drift_unit(vector4double& x, vector4double& y, vector4double& cdt, 
                       vector4double& xp, vector4double& yp, vector4double& dpop, 
                       vector4double const& length, vector4double const& reference_momentum, 
                       vector4double const& m, vector4double const& reference_time) {
    vector4double one = {1,1,1,1};
    vector4double inv_npz = rsqrtd4(

vec_sub(
vec_sub(

vec_mul(vec_add(one, dpop), 
vec_add(one, dpop)),
vec_mul(xp,xp)), vec_mul(yp,yp)));

    vector4double lxpr = vec_mul(vec_mul(length, xp), inv_npz);
    vector4double lypr = vec_mul(vec_mul(length, yp), inv_npz);
    vector4double D = sqrtd4(vec_add(vec_add(vec_mul(length,length), 

vec_mul(lxpr,lxpr)), vec_mul(lypr, lypr)));
    vector4double p = vec_add(reference_momentum, 

vec_mul(reference_momentum, dpop));
    vector4double E = sqrtd4(vec_add(vec_mul(p,p), vec_mul(m,m)));
    vector4double beta = vec_swdiv_nochk(p, E);
    x = vec_add(x,lxpr);
    y = vec_add(y,lypr);
    cdt = vec_add(cdt, vec_sub(vec_swdiv_nochk(D, beta),reference_time));
}
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